
OBJECT-ORIENTED

COMPUTATION IN

C++ AND JAVA

O

Best Practices for the Formal Software Testing Process: A Menu of Testing Tasks
by Rodger D. Drabick foreword by William E. Perry
ISBN: 0-932633-58-7 Copyright © 2004 312 pages, softcover

The Deadline: A Novel About Project Management
by Tom DeMarco
ISBN: 0-932633-39-0 Copyright ©1997 320 pages, softcover

Five Core Metrics: The Intelligence Behind Successful Software Management
by Lawrence H. Putnam and Ware Myers
ISBN: 0-932633-55-2 Copyright © 2003 328 pages, softcover

More Secrets of Consulting: The Consultant’s Tool Kit
by Gerald M. Weinberg
ISBN: 0-932633-52-8 Copyright © 2002 216 pages, softcover

Peopleware: Productive Projects and Teams, 2nd ed.
by Tom DeMarco and Timothy Lister
ISBN: 0-932633-43-9 Copyright © 1999 264 pages, softcover

The Psychology of Computer Programming: Silver Anniversary Edition
by Gerald M. Weinberg
ISBN: 0-932633-42-0 Copyright ©1998 360 pages, softcover

Systems Modeling & Requirements Specification Using ECSAM:
An Analysis Method for Embedded and Computer-Based Systems
by Jonah Z. Lavi and Joseph Kudish
ISBN: 0-932633-45-5 Copyright © 2005 400 pages, softcover

Waltzing with Bears: Managing Risk on Software Projects
by Tom DeMarco and Timothy Lister
ISBN: 0-932633-60-9 Copyright © 2003 208 pages, softcover

Also Available from Dorset House Publishing

DORSET HOUSE PUBLISHING
An Independent Publisher of Books on

Systems and Software Development and Management. Since 1984.
353 West 12th Street New York, NY 10014 USA

1-800-DH-BOOKS 1-800-342-6657
212-620-4053 fax: 212-727-1044

info@dorsethouse.com www.dorsethouse.com

For More Information

✔ Contact us for prices, shipping options, availability, and more.

✔ Sign up for DHQ: The Dorset House Quarterly in print or PDF.

✔ Send e-mail to subscribe to e-DHQ, our e-mail newsletter.

✔ Visit Dorsethouse.com for excerpts, reviews, downloads, and more.

Dorset House Publishing
353 West 12th Street
New York, NY 10014

Conrad Weisert

OBJECT-ORIENTED

COMPUTATION IN

C++ AND JAVA

O

Library of Congress Cataloging-in-Publication Data

Weisert, Conrad.
Object-oriented computation in C++ and Java / Conrad Weisert.

p. cm.
Summary: "Introduces use of numeric data items in C++ and Java, object-

oriented computer programming languages. Numeric data items are a subset of
application-domain objects and are central to business and scientific software
applications. Includes exercises and answers"--Provided by publisher.

ISBN-13: 978-0-932633-63-7 (trade paper : alk. paper)
ISBN-10: 0-932633-63-3 (trade paper : alk. paper)
1. Object-oriented programming (Computer science) 2. C++ (Computer

program language) 3. Java (Computer program language) I. Title.
QA76.64.W4353 2006
005.1'17--dc22

2006002491

Quantity discounts are available from the publisher. Call (800) 342-6657 or
(212) 620-4053 or e-mail info@dorsethouse.com. Contact same for examina-
tion copy requirements and permissions. To photocopy passages for academic
use, obtain permission from the Copyright Clearance Center: (978) 750-8400 or
www.copyright.com.

Trademark credits: All trade and product names are either trademarks, registered
trademarks, or service marks of their respective companies, and are the property
of their respective holders and should be treated as such.

Cover Design: Nuno Andrade

Copyright © 2006 by Conrad Weisert. Published by Dorset House Publishing,
353 West 12th Street, New York, NY 10014.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without prior written per-
mission of the publisher.

Distributed in the English language in Singapore, the Philippines, and Southeast
Asia by Alkem Company (S) Pte. Ltd., Singapore; and in the English language in
India, Bangladesh, Sri Lanka, Nepal, and Mauritius by Prism Books Pvt., Ltd.,
Bangalore, India.

Printed in the United States of America

Library of Congress Catalog Number:

ISBN-10: 0-932633-63-3
ISBN-13: 978-0-932633-63-7

12 11 10 9 8 7 6 5 4 3 2 1

I was first made aware of the value of well-organized, highly-mod-
ular programs by Joe Myers (IBM) along with Tom Steel (System
Development Corp.), George Mealy (Rand Corp.), and other
designers of the SHARE Operating System (SOS) for the IBM 709,
arguably still the most elegant large program I’ve seen. I’m grateful
to my bosses at the Johns Hopkins Applied Physics Laboratory, Bob
Rich and Lowell McClung for encouraging and supporting me in
maintaining and enhancing SOS, in participating in large-scale appli-
cation development, and in contributing to our scientific library of
reusable modules.

The structured revolution and the PL/I language helped me to
reinforce and expand my appreciation of good programming prac-
tices in a higher-level language. I appreciated the support of my boss
at Union Carbide Corp., Jim Rowe, in applying those practices to
major business applications. We established a business-oriented
library of reusable modules that eventually contained many of the
kinds of building block that would later be formalized in object-ori-
ented programming (OOP).

David Miller (DePaul University) introduced me to OOP in an
advanced artificial intelligence programming course using CLOS
(LISP OOP extensions). Another DePaul instructor, Glenn Lancaster,
introduced me to the new and still shaky C++ language. Since 1990,

v

ACKNOWLEDGMENTSA

various clients have provided platforms for me to advise on and
teach OOP concepts and techniques, and to develop useful OOP
classes.

The Knowledge Systems Institute (KSI) and the Illinois Insti-
tute of Technology (IIT) gave me the chance to expand my short
OOP courses into full-semester academic courses.

It used to be customary to thank colleagues for their help in
proof-reading and correcting errors, but people are busy these days.
Colleagues, former mentors, and family members have encouraged
my work on this book and expressed their wish to have a copy of the
finished product, but the responsibility for mistakes is entirely mine.
My former IIT student, Vijayram Gopu, was helpful in reviewing
early drafts of several chapters.

The skillful and patient editors at Dorset House Publishing have
caught a number of typos and assured consistency of style.

Readers who discover errors of any kind should let me know at
cweisert@acm.org. If the volume or seriousness demand, I’ll post
corrections and discussion on my company Website,
www.idinews.com.

vi • ACKNOWLEDGMENTS

CONTENTS

vii

Preface ..xv

Introduction ...3

I.1 YOUR BACKGROUND ...3
I.2 READING GUIDE ..4

Problems and exercises...4
I.3 METHODOLOGY INDEPENDENCE ..5
I.4 CHOICE OF LANGUAGE..5

Chapter 1: Numeric Objects in Context...................................7

1.1 DATA AND OBJECTS ...7
1.2 APPLICATION-DOMAIN DATA..8

Problems and exercises...9
1.3 NON-APPLICATION-DOMAIN DATA ...9
1.4 FOUR BASIC TYPES OF ELEMENTARY DATA10

Problems and exercises ...11
1.5 AVOIDING FALSE COMPOSITES ..12
1.6 NUMERIC DATA REPRESENTATION ..13
1.6.1 Choosing the unit of measure...13
1.6.2 Other properties of numeric data representation14

Problems and exercises ...14
1.6.3 Criteria for external and internal data representations14
1.6.4 Object-oriented implementation of the representation15

C

Problems and exercises ...15
1.6.5 Converting between internal and external representation........16
1.6.6 Internal-to-external conversion (output)16

Problems and exercises ..18
1.6.7 External-to-internal conversion (input)19

Definition:..20
Problems and exercises ...20

Chapter 2: Review of C++ and Java Facilities and
Techniques for Defining Classes21

2.1 TO THE READER ..21
2.2 THE BASIC GOAL—A MAJOR DIFFERENCE BETWEEN C++ AND JAVA..

22
Problems and exercises ...24

2.3 CONSTRUCTORS AND DESTRUCTOR ..24
2.3.1 Purpose ..24
2.3.2 C++ constructors..25
2.3.3 Java constructors...26
2.3.4 Special constructors ...26
2.3.5 C++ Compiler-generated functions27
2.3.6 C++ destructor...27
2.3.7 Java destructor and garbage collection28
2.3.8 Java assignment operator ..29
2.3.9 Implicit conversion in C++ ...30
2.3.10 Implicit conversion in Java ..30
2.4 OPERATOR OVERLOADING IN C++ ...31
2.4.1 Member function versus independent function......................31

Problems and exercises ...33
2.4.2 Sequence and localization..33

Problems and exercises ...34
2.4.3 Increment and decrement operators35
2.4.4 Inline versus separately compiled function35
2.4.5 What about exponentiation? ..36

Problems and exercises ...37
2.5 OPERATOR OVERLOADING IN JAVA...37

Problems and exercises ...38
2.6 FLOW CONTROL CONSTRUCTS ...39
2.6.1 Prefer prefix increment and decrement39
2.6.2 Avoid switch case for implementing a table...........................39

viii • CONTENTS

Problems and exercises ...41
2.7 MANIPULATING CHARACTER-STRINGS IN C++41
2.7.1 C-style strings..41
2.7.2 User-defined string classes ..42
2.7.3 The standard string class ..42
2.7.4 String handling in this book...43
2.8 CANONICAL CLASS STRUCTURE..43
2.9 OVERCOMING MACROPHOBIA ..44
2.9.1 Bad macros ...44
2.9.2 Good macros ...45
2.9.3 Packaging common patterns in elementary numeric classes....46

Problems and exercises ...46
2.9.4 #include dependencies ..47

Problems and exercises ...48
2.9.5 Macros in this book ..48
2.10 PROGRAM READABILITY ...49
2.10.1 Commentary and data names...49
2.10.2 Format criteria and editor support50
2.10.3 Uncontrolled page breaks ..50
2.10.4 Page and line width ..51
2.10.5 A macro convention ..52
2.10.6 Indentation and white space ..52
2.10.7 Alignment ...53
2.11 ERROR DETECTION AND EXCEPTIONS......................................53

Problems and exercises ...54

Chapter 3: DEFINING A PURE NUMERIC DATA TYPE56

3.1 WHAT DOES “PURE NUMERIC” MEAN?56
3.2 EXAMPLE: DESIGNING A COMPLEX NUMBER CLASS56
3.2.1 Sketching a Complex class...57

Problems and exercises ...58
3.2.2 Complex arithmetic ..59

Problems and exercises ...60
3.2.3 Supporting an external representation for complex numbers...61

Problems and exercises ...61
3.2.4 Interactions between complex and real numbers62

Problems and exercises ...64
3.2.5 Polar coordinates..65

Problems and exercises ...66

CONTENTS • ix

3.3 PACKAGING AND USING THE COMPLEX CLASS...........................66
Problems and exercises ...67

3.4 SOME OTHER PURE NUMERIC CLASSES68
3.4.1 Rational numbers (exact fractions)68

Exercise(*L) ..69
Hints ...69

3.4.2 Decimal numbers ...70
Exercise ...70

3.4.3 Integers of unusual sizes ...70
Problems and exercises ...71

3.5 JAVA EQUIVALENTS ..71
3.5.1 Constructors and accessors ...71

Problem ...73
3.5.2 Arithmetic and comparison operators73

Problems and exercises ...73

Chapter 4: DEFINING A NUMERIC TYPE HAVING AN ADDITIVE

UNIT OF MEASURE ..75

4.1 UNIT OF MEASURE IN MODELING REAL-WORLD DATA..................75
4.1.1 Not like pure number classes ...75
4.1.2 Conventional rules of arithmetic ...76

Problems and exercises ...76
4.2 A BUSINESS APPLICATION EXAMPLE: MONEY CLASS77
4.2.1 Requirements and strategy for a money class77
4.2.2 Money arithmetic operators..78

Problems and exercises ...80
4.2.3 Money constructors and accessors81

Problems and exercises ...82
4.2.4 Relational operators..82

Problems and exercises ...83
4.2.5 Internal Money representation..83

Problems and exercises ...84
4.3 NOTING THE ADDITIVE PATTERN ..85
4.3.1 Packaging and reusing the pattern86
4.3.2 Additional operators ...87

Problems and exercises ...90
4.3.3 Using the pattern to build the class definition.......................90

Problems and exercises ...90
4.4 SUPPORTING AN EXTERNAL MONEY REPRESENTATION.................91

x • CONTENTS

4.4.1 Choosing the representation...91
4.4.2 Placement and packaging the function.................................91
4.4.3 Function skeleton...92
4.4.4 A first version of the function body......................................92

Problems and exercises ...93
4.4.5 Generalizing the external representation94

Problems and exercises ...95
4.6 MORE ADDITIVE CLASSES ..96
4.6.1 Duration ...96

Problems and exercises ...97
4.6.2 Angle..97

Exercise ...98
4.6.3 Mass ..99

Exercise ...99
4.7 ADDITIVE CLASSES IN JAVA ...99

Problems and exercises ...102

Chapter 5: THE POINT-EXTENT PATTERN FOR PAIRS OF

NUMERIC TYPES ...103

5.1 NON-ADDITIVE NUMERIC TYPES ...103
5.1.1 Our first non-additive type: Date103
5.1.2 Needing a companion class ..104
5.1.3 A naming issue: Why call it “Days”?..................................104

Problems and exercises..105
5.1.4 Interactions between the two classes106
5.1.5 Noting the point-extent pattern...107

Problems and exercises..108
5.2 ANOTHER COMPANION CLASS: CALENDARINFO.......................109
5.2.1 Simplifying Date by minimizing calendar dependencies109
5.2.2 Packaging calendar information ..110

Note ..110
Problems and exercises..112

5.3 BACK TO DATE AND DAYS...112
5.3.1 Increment and decrement operators113
5.3.2 Choosing the internal representation114
5.3.3 Date Constructors ..116

Problems and exercises..116
5.3.4 Date Accessors ...117

Problems and exercises..118

CONTENTS • xi

5.3.5 External representations..119
5.3.6 Relational operators ..120
5.3.7 More Date functions..121
5.3.8 Capturing the Point-Extent pattern for reuse121
5.4 OTHER POINT-EXTENT PAIRS...122
5.4.1 2-dimensional points and distances...................................123
5.4.2 Temperature ..124

Problems and exercises..124
5.5 DATE AND DAYS CLASSES IN JAVA124
5.5.1 Code replication ...124
5.5.2 Multithreading protection ..125
5.5.3 A Dates Package ...126

Problems and exercises..127
5.6 OTHER POINT-EXTENT CLASSES IN JAVA..............................127

Exercise..128

Chapter 6: FAMILIES OF INTERACTING NUMERIC TYPES129

6.1 BEYOND THE PATTERNS ..129
6.2 EXAMPLE: ELECTRICAL CIRCUIT QUANTITIES..........................130
6.2.1 Background ...130

Problems and exercises..132
6.2.2 Starting an object-oriented implementation132

Problems and exercises..133
6.2.3 General strategy ...134
6.2.4 Factoring out commonality without inheritance...................135

Problems and exercises..135
6.2.5 A controversial operator overloading choice.........................136

Problem ...136
6.2.6 Another operator notation issue..137

Problems and exercises..137
6.3 GREATER INTERACTION: NEWTON’S LAWS IN A STRAIGHT LINE...138
6.3.1 Background; new challenges ..138
6.3.2 Strategy: Incremental development....................................139
6.3.3 Developing the linear model ...139

Problems and exercises..140
6.3.4 Designing the Velocity and Acceleration classes...................140

Problems and exercises..143
6.3.5 Designing the Force class...143

Problems and exercises..145

xii • CONTENTS

6.4 EXTENDING NEWTONIAN CLASSES TO THREE-DIMENSIONAL SPACE
145

6.4.1 Choosing the coordinate system..145
Problems and exercises..146

6.4.2 A Distance class template ..147
Problems and exercises..149

6.4.3 Related class templates ...150
6.5 OTHER FAMILIES OF INTERACTING TYPES...............................150

Problems and exercises..150
6.6 SUMMARY ..150
6.7 JAVA VERSIONS...151

Problems and exercises..152

Chapter 7: Role of Inheritance and Polymorphism
with Numeric Types...153

7.1 Review of example classes ..153
7.2 Representation is not specialization...................................154
7.3 Usage is not specialization ...155
7.4 A numeric specialization example......................................156

Problems and exercises..157
7.5 Obstacles to polymorphic functions158

Problems and exercises..158
7.6 Turning off Java polymorphism...159
7.7 Why bother with OOP?...160

Chapter 8: Programming with Numerical Vectors
and Matrics ...161

8.1 INTRODUCTION ..161
8.2 EXISTING FACILITIES...161
8.2.1 The C foundation and its many flaws.................................161
8.2.2 Java’s built-in arrays ..163
8.2.3 Standard Template Library Containers...............................164
8.3 A C++ BASE CLASS FOR ALL ARRAYS165
8.3.1 Name and template ...165
8.3.2 A possible class hierarchy ..165
8.3.3 Internal data representation ...166
8.3.4 One-dimensional subscripts ...167

Problems and exercises..169
8.4 SOME SPECIALIZED VECTOR CLASSES169

CONTENTS • xiii

8.4.1 Sparse vectors..169
Problems and exercises..171

8.4.2 Vectors too big to fit in memory ..171
8.5 OPERATIONS ON NUMERIC ARRAYS171
8.5.1 Array expressions ...171
8.5.2 Template complications and packaging172
8.5.3 Mixed array expressions with scalars.................................175
8.5.4 Scalar functions in matrix expressions...............................175
8.6 A BASIC MATRIX CLASS...176
8.6.1 Multi-dimensional subscripts ...176

Problems and exercises..178
8.7 SOME SPECIALIZED MATRIX CLASSES179
8.7.1 Square matrices ...179

Problems and exercises..179
8.7.2 Triangular, diagonal, and symmetric matrices.....................180

Problems and exercises..182
8.7.3 Cross sections and overlaying...182
8.8 WHAT ABOUT JAVA? ..183

Appendix A: JAVA Code Samples ...185

Appendix B: C++ Code Samples..207

Index ...281

xiv • CONTENTS

PREFACE

Object-Oriented Computation in C++ and Java fills a gap in the litera-
ture of object-oriented programming. Many C++ or Java textbooks,
courses, and class libraries emphasize object-oriented classes for two
kinds of data:

• one-dimensional containers (Java collections), such as
vectors, lists, and sets

• graphical user interface (GUI) components, such as
windows, forms, and menus

However, most of the data items our programs process belong to nei-
ther of those categories. Container structures and GUI components
rarely belong to the application domain. They don’t represent actual
objects in the real world of a business or science application. True
application-domain objects model real-world data items at the core
of the very purpose behind developing a computer application.1

This book is about an important subset of application domain
data: numeric data items. Numeric data are central both to most

xv

P

1Application-domain objects are sometimes misleadingly called “business
objects,” although they’re not limited to business or commercial applications.
Scientific and engineering applications need and use application-domain objects
just as much, if not more.

business applications and to every engineering or scientific applica-
tion.

For over a dozen years, I’ve been teaching courses in advanced
object-oriented programming. My students have backgrounds in
both commercial/business applications and scientific/engineering
applications. In searching for a suitable textbook, I found none that
adequately treated application-domain objects.

Unfortunately, but hardly surprisingly, the omission of applica-
tion-domain data from books and courses is mirrored by much appli-
cation software. I frequently encounter allegedly “object-oriented”
application systems in which nearly all numeric quantities are repre-
sented as floating-point numbers, as if the programmers have coded
in Fortran.

In response, I developed a large collection of course handout
material, part of which has evolved into this book.

Object-Oriented Computation in C++ and Java is suited to an
advanced programming course for senior undergraduates or mas-
ters-level students in engineering, business, or the sciences, as well as
to self-study by practicing professionals. Since it covers an area
neglected by most OOP textbooks, it also serves well as a supple-
mentary text in a survey course in object-oriented programming for
computer science majors.

xvi • PREFACE

Conrad Weisert

OBJECT-ORIENTED

COMPUTATION IN

C++ AND JAVA

O

INTRODUCTION

I.1 Your background

This book is for experienced programmers. You should either have
completed a rigorous introductory course in object-oriented pro-
gramming or have developed one or more nontrivial complete appli-
cations or object-oriented components.

I assume you already know

• the syntax and semantics of either C++ or Java
• facilities the language provides for defining classes

and instantiating objects
• fundamental OOP notions of encapsulation, inheri-

tance, and polymorphism

Whether you’re an advanced student or a mature professional, you
surely strive to be a good programmer. After mastering the concepts
and techniques detailed in this book, you can expect

• to produce application software of high quality, especially
as measured by the cost of its future maintenance as well
as by robustness, efficiency, ease of use, and potential
reuse

• to be highly productive, solving problems in far less time
than the average programmer

3

I

• to exercise creativity and originality, developing non-
obvious solutions to problems that an average pro-
grammer either might not solve at all or would solve in a
crude way

I.2 Reading guide

If you’re a practicing application developer, you’ll find it easy to read
this book on your own. You should find each chapter’s concepts and
techniques directly and routinely relevant to the applications you
work on.

Chapter 1 lays a foundation for numeric objects, showing their
relationship to other kinds of data.

Chapter 2 reviews the language facilities you’ll need in the later
chapters. If you’re already a world-class expert in C++ and Java, you
may choose to skip this chapter.

Chapters 3 through 6 examine particular categories of numeric
data that appear in real-world applications. We cite common pat-
terns, starting with the simplest pure numeric classes, and build up to
families of interacting related classes. We build representative and
useful classes to support each category, working incrementally
through the thought processes that a competent object-oriented
designer would be likely to experience.

Chapter 7 examines the admittedly small potential for exploiting
inheritance and polymorphism with numeric data.

Chapter 8 departs from numeric classes and objects to discuss
arrays of numeric objects, emphasizing matrix manipulation and
arrays of higher dimensionality. The container classes we develop in
this chapter make heavy use of inheritance and polymorphism.

Problems and exercises

Most topics are followed by exercises. Some call for designing and
writing code, while others call for analysis and discussion. Most can
be easily solved in a few minutes. Those marked with a laurel
wreath (see left) will take longer, and are suitable for small course
projects. Those marked with a lightbulb (see left) call for creative
insight that’s reasonable to expect from a highly experienced profes-
sional, but may elude or startle students who are accustomed to
being given low-level how-to specifications in an introductory pro-
gramming course.

4 • INTRODUCTION

INTRODUCTION • 5

The appendices contain the source code listings for most of the
examples and suggested answers to selected exercises.

I.3 Methodology independence

Every program that performs nontrivial computation requires the
kind of object-oriented class presented in this book, regardless of the
tools and techniques used to specify and design it. Whether you love
or hate UML,1 favor or shun so-called agile methods, or design by
hand or with C.A.S.E. tools,2 your object-oriented program will need
exactly the same numeric classes. Two development teams may
develop program components in a different sequence, or may docu-
ment them in a different way, but the end-product software will con-
tain essentially the same numeric classes.

Therefore, all software developers who work on computational
applications will find this book compatible with the techniques they
prefer.

I.4 Choice of language

This book is for C++ programmers and Java programmers. The
exposition and examples use C++ mainly because C++ provides
much stronger support for numeric data than Java does. If you’re
doubtful, bear with us in the early chapters and you’ll soon see why.

But even if you’re a committed Java programmer, you’ll still find
those presentations useful and relevant. The languages are similar
enough that you should easily understand the C++ code examples.
In addition, near the end of most chapters, we convert the most
important examples to Java, noting the main differences between the
two languages. The appendices contain source code in both lan-
guages.

The principles also apply to most other programming languages
that support objects. Even if your preferred programming language is
C#, Python, Ruby, or Smalltalk, you’ll find most of this book helpful.

1Unified Modeling Language, endorsed as a standard by the Object Manage-
ment Group.
2Computer-assisted software engineering.

1
NUMERIC OBJECTS
IN CONTEXT

7

1.1 Data and objects

This chapter is about data. A solid understanding of data is not only
vital to applying the object-oriented paradigm; it is a valuable aid to
all kinds of data analysis and programming. A programmer who
tries to develop application software without mastering these con-
cepts is at a serious disadvantage.

We first examine the top levels of the natural hierarchy or tax-
onomy of data types. This natural taxonomy is not directly supported
by any programming language, nor have the names of the types been
legitimized by any standards body or other influential organization.
Don’t try to figure out which built-in data type in C or any other pro-
gramming language corresponds to each of the natural types
described here; just try to understand what they are and how they
differ from one another.

We also introduce a lot of terminology, sometimes multiple terms
for the same thing. Occasionally, one term describes two different
things. Terminology conflicts are unfortunate—and annoying—but
they arose as various branches of information technology evolved
independently. The inconsistencies are now such well-established
conventions that we have to put up with them.

Finally, we look at data representation, drawing a firm distinc-
tion between what a data item is and what it looks like.

8 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

1.2 Application-domain data

Application-domain data represent objects in the real world. They
fall into two categories:

1. Elementary data items are not meaningfully decom-
posed into independent components. Alternative
names for elementary data items include

• element
• field (within a composite data item)
• attribute (of a composite data item)

2. Composite data items are fixed arrangements of other
independent data items (components), which can
themselves be either elementary or composite. Alter-
native terms for composite data items include

• record, the common term in data processing
and in Pascal programming

• dataflow, the usual term in structured systems
analysis

• struct, in C programming
• group item, in Cobol programming
• control block, in operating system internals

Both kinds of application-domain data are common in real-world
applications and are also well suited to object-oriented concepts and
techniques.

We sometimes include a third fundamental category in the appli-
cation domain:

3. Container data items are data structures that act as
receptacles for other data items, which may be ele-
mentary, composite, or (rarely) other containers.
Alternative terms for container data items include

• collection, the usual term in the Java program-
ming community, which reserves “container”
for graphical user interface (GUI) objects,
such as frames and windows

1 • NUMERIC OBJECTS IN CONTEXT • 9

• data structures, the usual term in theoretical
computer science, especially for dynamic con-
tainers that can change their size and shape
during execution.

The data items stored in a container are called “elements” of the con-
tainer, whether they’re elementary or composite. A homogeneous
container can hold elements of one type; a heterogeneous container
can hold elements of multiple types.

Problems and exercises

1.2-1 Are the three fundamental categories of data sufficient to
accommodate pictures or audio information? If so, into which
of the three categories do pictures and audio fit? If not, how
should we extend the top-level taxonomy?

1.2-2 Some writers on object-oriented technology prefer the term
“business objects” over “application domain data.” Is that
term more or less descriptive? What does it imply about the
writers’ views of the role and the importance of such data?

1.3 Non-application-domain data

As your programming experience no
doubt has shown, computer programs
also manipulate many data items that
correspond to nothing in the real world
of the application. Programmers used to
call such items “housekeeping data.”
Today, these items play a far greater role
than that term implies. Here are some
common examples:

• graphical user interface (GUI) objects, such as screen
windows and forms

• tables used to describe properties of other data
• program execution artifacts, such as user sessions
• initialization switches, record counters, check sums,

end flags
• flags and semaphores used to synchronize concurrent

processes

What about pointers?

Pointers aren’t really data at
all, and they rarely represent
anything in the application
domain. They serve mainly
as a mechanism for repre-
senting relationships among
data items.

Non-application-domain data include the same three fundamental
types that we encounter in application-domain data. Although this
book is strictly about application-domain data, you’ll find some of
the concepts and techniques we’ll be examining applicable to some
non-application-domain data.

1.4 Four basic types of elementary data

The three fundamental categories are just the top level of a complete
taxonomy of data types. We can further divide each of those three
categories into useful families of data types. In particular, every ele-
mentary data item belongs to one and only one of these four basic ele-
mentary types:

1. A discrete (or enumerated or coded) data item takes on
one from a set of possible values. Discrete data items
often serve as identifiers (productCode) or state data
(maritalStatus).

2. A numeric data item is one upon which some arith-
metic operation is meaningful. Numeric data are the
main focus of this book.

3. A logical (or Boolean1 or option) data item takes on one
of two possible truth-values (true/false, yes/no,
on/off, present/absent, and so on).

4. A text (or character-string) data item is a sequence of
characters. Text data items often serve as names of
entities (people, companies, cities) or are used for
communication in a natural language (messages, let-
ters, dialogues).

Here’s the taxonomy so far:

10 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

1After the British mathematician George Boole (1815-1864), who codified and
popularized Boolean Algebra.

1 • NUMERIC OBJECTS IN CONTEXT • 11

Problems and exercises

1.4-1 Many programmers whose first language was C or Java think
of text data as containers of characters rather than as elemen-
tary items. Programmers whose first language was PL/I,
Cobol, or Basic do not share this view.

a. Explain what you think accounts for these con-
flicting views.

b. Discuss the pros and cons of the two views, and
their likely impact on database design and pro-
gram structure.

1.4-2 Some programmers point out that we can view logical data as
a special case of discrete data having only two possible values.
Based on what you know now, would that complicate or sim-
plify software design?

1.4-3 A street address composite item contains a city field and
a state field. A designer has determined that city is a text
data item while state is a discrete data item. Explain why
the designer’s determination is reasonable.

Data Item
(or Object)

Elementary
Data Item

Container
Data Item

Composite
Data Item

Discrete Data Item

Numeric Data Item

Text Data Item

Logical Data Item

12 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

1.5 Avoiding false composites

Beginners sometimes confuse components of a mixed-base numeric
representation with fields of a composite item. For example,

struct Weight {
long pounds;
short ounces;};

Is a Weight object a com-
posite data item or an elemen-
tary numeric data item? The
answer is clear from the defin-
itions: pounds and ounces
aren’t independent compo-
nents of a weight object;
together they express the
internal representation of a
single data item. A weight
object, then, is an elementary
numeric data item, no matter
how we choose to represent it
in a computer.

A more subtle case is a
Date object. We may choose to
represent a date as three com-
ponents of the traditional Gre-
gorian calendar representation,
year, month, and day. Here
again we normally consider a
date to be a single elementary
numeric data item, even
though some programs that perform calendar manipulations may
extract and apply special significance to one of those components.
Chapter 5 explores date representation and date manipulation in depth.

1.6 Numeric data representation

1.6.1 Choosing the unit of measure

For each of the following kinds of numeric data item, which of the
alternative units is better, and what other representations are worth
considering?

Avoiding false numerics

When we determine that an elementary
data item belongs to one of the four basic
types, we’re specifying what that item is,
not what it looks like. A U.S. postal ZIP
code, for example, is represented by a
sequence of numeric digits, but it is a dis-
crete data item. Many false numerics have
the word “number” in their data name,
such as accountNumber. Since it
would be non-sensical to perform arith-
metic on ZIP codes or account numbers,
they are not numeric data items.

Some old-fashioned programming
languages and tools, such as Cobol and
Oracle, use representation-based data dec-
laration, rather than type-based. They
encourage, but don’t require, the designer
to choose among such predefined pseudo
types. As a result, many programs and
data bases developed with those tools
specify discrete data items as “numeric.”

Note that the old-fashioned term
alphanumeric never denotes a data type.

1 • NUMERIC OBJECTS IN CONTEXT • 13

Experienced software designers understand that neither choice is
“better.” In a data-entry form or a report, many American end-users
prefer the familiar representations in column A. Inside programs
and databases, on the other hand, most programmers opt for the sim-
pler representations in column B.

Thus, for most real-world data items we need two representa-
tions, not just one:

• An external data representation appears in anything
seen by end-users, such as reports, input forms,
inquiry displays, and shipping labels.

• The internal data representation appears in internal
computer entities that are never seen by end users,
such as programs, databases, master files, and work
files.

1.6.2 Other properties of numeric data representation

In addition to the unit of measure, we have to specify

• the range of values
• the precision

The range is defined by a pair giving the minimum and maximum
values. In a payroll system we might define the range of hourly-
Wage as <$6.50, $90.00> and noOfDependents as <0, 18>. The
precision is the smallest significant change in value, for example,
1/2 cent for hourlyWage, 1 for noOfDependents.

Data item
type

Representation A Representation B

Weight pounds and ounces grams

Time of Day hour, minutes, and
seconds*

seconds since
midnight

Temperature degrees Fahrenheit degrees Kelvin

Length /
distance

miles, feet, and
inches*

meters

* normalized

14 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

Problems and exercises

1.6-1 Some old-fashioned data-dictionary tools call for the size of a
numeric item (the number of digits needed to contain it, in
other words). Is that property equivalent to the range? If
not, how do you suppose that tradition got started?

1.6.3 Criteria for external and internal data representations

The criteria for choosing internal representations are entirely dif-
ferent from the criteria for choosing external representations. Exter-
nal data representations must be

• familiar to the users of the application
• not error-prone (for input)

while internal data representations should be

• simple
• efficient (especially in terms of space)
• standardized for interchange among programs and

organizations

It would be wrong to force end-users to cater to developers by
adopting representations they don’t encounter in their everyday
work. It would be equally wrong to ask the programmers to deal
repeatedly with messy “traditional” representations.

1.6.4 Object-oriented implementation of the representations

You should always draw a clear distinction between internal and
external data representation, and object-oriented programming helps
you to do so in a natural and systematic way. The internal represen-
tation of an object corresponds to the object’s member data. The access
rules of C++ and Java let us make sure that knowledge of the private
internal representation is known only to a few closely related parts of
the program.

Thus you can design a Weight class like either of these:

class Weight {
long pounds;
short ounces;
.
.

};
class Weight {

double grams;
.
.

};

and the only programs that will know which you chose will be some
of the member functions of Weight.

An object-oriented programmer can also control external repre-
sentations in a variety of ways. We will explore these later.

Problems and exercises

1.6-2. In the 1960’s, systems analysts often confused simple with
familiar. Cite two or three traditional and very familiar
numeric data representations for which it’s complicated to
perform arithmetic on or to compare two data items.

1.6-3. In the late 1990’s, vast efforts were expended on the so-called
“Y2K crisis.”

a. Discuss how that crisis arose and who, if anyone,
was to blame for it.

b. Explain why some organizations had no Y2K
troubles at all with their internally developed
applications.

1.6-4 The 1990’s saw the emergence of a new protocol for data
interchange, Extensible Markup Language (XML). If you’re not
acquainted with XML, consult an introductory tutorial on it.
Then discuss (a) how XML either supports or undermines the
distinction between internal and external data representa-
tions, and (b) its likely impact upon program and database
design.

1 • NUMERIC OBJECTS IN CONTEXT • 15

16 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

1.6.5 Converting between internal and external representation

Although it’s the programmer’s responsibility to convert between
external and internal representations of a data item, we don’t think of
that as an extra burden but rather as a simplification. In any large
program or suite of programs only one or two functions need to have
knowledge of an external representation. If the program is object ori-
ented, then the internal representation is hidden from the rest of the
program, and manipulation of the data items takes place through the
public client interface.

1.6.6 Internal-to-external conversion (output)

Whenever a program needs to display a data item for the end user,
either on a screen or on a printed report, the program must convert
the internal representation to a suitable external representation. C++
and Java provide simple and elegant facilities for generating a stan-
dard or default external representation for a given type of data item.

C++ extends the meaning of the << operator (originally C’s left
shift operator) as the output-stream insertion operator. Whenever we
define a new class of data item, we can extend the meaning of that
operator to convert data items of that class to any desired external
format.

Consider a simple Date structure that a C programmer might
define like this:

struct Date {
int year;
int month;
int day;};

Now suppose the programmer codes this:

Date dateHired = {1985,12,5};
.
.

rptFile << dateHired;

Since left-shifting makes no sense for a struct, the compiler would
normally complain about an illegal structure operation. But if we
first define an overloaded << operator that takes an output stream as
its left-side operand and a Date object as its right-side operand, the
compiler will invoke it:

1 • NUMERIC OBJECTS IN CONTEXT • 17

ostream& operator<< (ostream& ls, const Date rs)
{return ls << rs.year << - << rs.month

<< - << rs.day;}

Then the program would be compiled correctly and would display

1985-12-5

on the rptFile.
Java’s equivalent facility is not tied to stream output but to con-

version from internal form to a character string. When the Java com-
piler sees an object in a context where it wants a character string, it
looks for a class member function with the name toString and gen-
erates code to invoke it. For example, Java interprets a call to the
library output-stream function

System.out.print(dateHired);

as if the programmer had coded

System.out.print(dateHired.toString());

That would produce the desired result if the programmer had
included the following member function in the Date class:

public String toString(final Date x)
{String result = x.year + - + x.month

+ - + x.day;
return result;

}

In Chapter 2 we shall review in more detail the rules for such func-
tions in both C++ and Java. Meanwhile, the above will serve as a
model. The point here was just to show that

• a default version of the conversion from internal to
external representation is easy to code,

• it can be localized to a single place, and
• you have full control over what it does. Of course,

you’re always free to write more specialized versions
when you need them.

18 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

Problems and exercises

1.6-5 The naïve C++ example was shown for a struct in which all
members are publicly accessible rather than for a class that
restricts access to the member data. What should we do dif-
ferently to make the output-stream insertion operator work
correctly without revealing the internal Date representation
to the whole world?

1.6-6 The date conversion functions shown earlier produced the
format “1985-12-5”. Suppose users complain that the lack
of a leading zero on the day or the month portion makes a
columnar display look ragged and messy. They want to see
10 characters for every date (for example, “1985-12-05”).
Modify either the C++ overloaded output-stream operator or
the Java toString() function to satisfy those users. (This is
a rather trivial exercise to illustrate the flexibility of localizing
such conversions.)

1.6-7 Suppose it’s decided that the default external output Date
should be in the American English style, for example
“December 5, 1985.” Rewrite either the C++ overloaded
output-stream operator or the Java toString function to sat-
isfy that requirement.

For this version, it’s obvious that we’ll need a table of month
names. The interesting design question is how to package
that table and where to put it. Is the output conversion func-
tion the only function that’s likely to need that table? We
shall return to this example in Chapter 5. (Don’t even think
about the crude beginner’s technique of implementing a
table as a switch .. case flow-control construct.)

1.6.7 External-to-internal conversion (input)

While converting to an external representation is easy, converting
from an external representation is usually much more difficult. It’s
easy to see why: We know exactly what the internal representation is
and we can be confident that it’s a valid value, but an external repre-
sentation coming from, say, keyboard input may take a variety of
forms and may exhibit many kinds of errors.

C++ experts are divided between two schools of thought:

• Some experts insist upon symmetry between input
and output. Anything you can write to an output
stream, you should be able to read back later from an
input stream.

• Others concede that it’s often impractical and ineffi-
cient to support such generality. They rely instead on
the application to provide suitable input editing
functions.

This book leans toward the second view, both because it’s less work
and also because many applications have no real need for a general
input function for each type of data. We may want to display
amounts of money with dollar signs and group separators (such as
“$1,202,499.20”), but few if any data-input programs would need
to read that format.

Experienced programmers know that thorough input editing is
essential in every application that gets data from an outside source,
such as from a keyboard. In a large application, the input-editing
functions greatly simplify the rest of the programs. Once the input
data have been edited, the rest of the programs not only deal with
the simpler and more efficient
internal representation, but can
also assume that values are valid.
A computational function that
gets a Date object parameter, for
example, needn’t check to verify
that the month number is between
1 and 12.

Definition

An input-editing program (or function) does two things:

1. It converts external data representations into
internal representations.

2. It validates that the data item has a legitimate value.

1 • NUMERIC OBJECTS IN CONTEXT • 19

Not an editor

An input-editing program is specific
to an application or to a type of data.
It is not the same as an editor (or
"text editor"), the kind of program
you’ve no doubt used to compose pro-
gram source code.

Problems and exercises

1.6-8 Discuss how the distinction between internal and external
data representation affects international application software
that’s designed to be used in many countries.

20 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

2
REVIEW OF C++ AND JAVA
FACILITIES AND TECHNIQUES
FOR DEFINING CLASSES

21

2.1 To the reader

This chapter is not a language tutorial. I assume you already have
experience in defining object-oriented classes in C++ or Java or both.
The emphasis here is on

• the choices we face among language facilities that
have duplicate or overlapping functionality,

• the background of various traditions in C++ and Java
programming, and

• established principles of good programming practice as
they apply to building and using object-oriented
classes.

Unlike later chapters, the following sections integrate corresponding
topics in the two languages. Even if you have absolutely no immediate
interest in one of the languages, you should resist the temptation to skip
over those explanations. By understanding the fundamental approaches
in C++ and Java and the differences between them, you’ll develop a
stronger command of object-oriented class design and an informed
appreciation of the strengths and weaknesses of each language.

22 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

2.2 The basic goal—a major difference between C++ and Java

C++ encourages us to minimize the differences between built-in or
primitive data and instances of user-defined classes. Bjarne Strous-
trup, the principal designer of C++, advises language designers:
“Provide as good support for user-defined types as for built in
types.”1 Numeric data type classes are especially suited to such con-
sistency because of the natural way in which programs manipulate
them using C’s rich set of operators.

Consider this program fragment, valid in C, C++, and Java:

double creditLimit;
double unitPrice = 49.95;
double totalPrice = 0;
int quantityOrdered;

.

.
totalPrice += quantityOrdered * unitPrice;
if (totalPrice > creditLimit)

.

.

Now suppose we later discover or develop a Money class that sup-
ports everything a program might do to amounts of money and also
alleviates auditors’ anxiety about floating-point rounding error.
What would we have to change in the above example to exploit the
Money class?

In C++ we’d change only the type name in the three declarations:

Money creditLimit;
Money unitPrice = 49.95;
Money totalPrice = 0;

If the Money class supports the basic goal, then the executable state-
ments will require no change at all. We wouldn’t even have needed
to change the three declarations if we’d had the foresight, as experi-
enced C programmers do routinely, to localize the original choice of
primitive type:

typedef double Money;

A basic goal in C++ for both the language itself and for anyone
designing a class is the following:

1Bjarne Stroustrup, The Design and Evolution of C++, 3rd ed. (Reading, Mass.:
Adison-Wesley Professional, 1994), p. 117.

2 • REVIEW OF C++ AND JAVA FACILITIES AND TECHNIQUES • 23

Objects, especially elementary data types, should behave as
much as possible like built-in primitive data.

In Java, it’s just the opposite!
Java is actually two distinct expression languages in one package:

one for manipulating primitive built-in data items, and a separate lan-
guage for manipulating objects or reference data items. They are dif-
ferent in almost every way.

To change the program fragment to exploit a Java Money class,
we’ll need to change every statement that refers to a Money data
item. The result might look like this:

Money creditLimit;
Money unitPrice = new Money(49.95);
Money totalPrice = new Money(0);
int quantityOrdered;

.

.
totalPrice.addSet(unitPrice.mpy(quantityOrdered));
if (totalPrice.greaterThan(creditLimit))

.

In Java, then, elementary objects behave differently from built-in
primitive types in almost every context.

Although it’s tempting to complain about this or even to argue
against using Java for computation, we shall not do so in this book.
Java’s designers believed they had valid reasons for rejecting the C++
basic goal, and organizations often have valid reasons for choosing to
develop applications in Java. We shall focus on making the best use
of the facilities that Java does support, and we’ll leave the language
arguments to other forums.

In either C++ or Java you have to go to a lot of trouble to design
and develop a robust and complete class for Money or any other
numeric data type. It’s marginally worth doing so for a single pro-
gram or a single project. What justifies the effort is the huge multi-
plier that results from using those class definitions in every program
developed in your organization or even in multiple organizations.
Once such a class is developed, packaged, and distributed, that
problem is solved forever.

24 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

Problems and exercises

2.2-1 Many Java programmers and some C++ programmers forgo
defining classes for numeric data. Instead, they just use
double, int, or another built-in primitive type. The exe-
cutable statements are then similar to those in Fortran, C, or
another procedural language. Discuss the pros and cons of
that approach. Consider ease of coding, ease of debugging,
ease of change, readability, reliability, and efficiency.

2.2-2 Other programmers go to the opposite extreme, defining
“wrapper” classes, so that the numeric objects are bona fide
objects. Then, instead of supporting operators and other
functions to operate on the object, they provide accessor and
modifier functions to retrieve and store the internal represen-
tation, and perform their operations on the built-in primitive
value. The executable part of the Money example might look
like this in either C++ or Java:

totalPrice.setValue(totalPrice.getValue()
+ quantityOrdered * unitPrice.getValue());

if (totalPrice.getValue() > creditLimit.get.Value()
.
.

Discuss the pros and cons of that approach.

2.3 Constructors and destructor

2.3.1 Purpose

A constructor is a function that is called, either explicitly or by com-
piler-generated behind-the-scenes code, for the purpose of initial-
izing the state (or member data items) of an object. It is given raw
uninitialized memory of the object’s size. It can, of course, explicitly
allocate memory for non-contiguous fields, but the compiler con-
siders only the resulting pointer to be part of the actual object.

In both C++ and Java, a constructor is written as a function that
has the same name as the class. It returns no value, not even void.

2.3.2 C++ constructors

C++ constructors are invoked in any of five ways:

• Declaring objects of the class, with or without initial-
ization parameters:

Complex x(2.5,-1.0), y, z;

• Declaring and initializing, using C syntax:

Money price = 49.95;

• Explicitly creating an unnamed temporary object:

z = x + Complex(1.0, 1.0);

• Implicitly creating an unnamed copy of the object:

Complex fctn(Complex x) // for the parameter
{return expr;} // and for the result

• Implicitly converting:

price += 1.50; // calls single parameter constructor

C++ constructors, like other functions, can specify default values for
optional trailing parameters. This sometimes lets us avoid coding
multiple constructors for a class:

class Complex {
double rp, ip;

public:
Complex(const double x=0.0, const double y=0.0)

: rp(x), ip(y) {}
.
.

2.3.3 Java constructors

Java constructors, on the other hand, are always invoked explicitly,
as the operand of a new operator, which allocates the memory for the
object.

Money price = new Money (49.95);

constructor call
declaration

2 • REVIEW OF C++ AND JAVA FACILITIES AND TECHNIQUES • 25

26 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

Java doesn’t support default parameter values, but one constructor can
invoke another constructor for the same class. To clarify that this is
happening, we use the reserved word this instead of the class name:

public class Complex {
double rp, ip;

public Complex(double x, double y) {rp = x; ip = y;}
public Complex(double x) {this(x , 0.0);}
public Complex() {this(0.0, 0.0);}

Java’s this keyword does further duty by relieving us from having
to think up names for constructor parameters that correspond to
member data items. The first constructor above can then be written:

public Complex(double rp, double ip)
{this.rp = rp; this.ip = ip;}

2.3.4 Special constructors

In both languages, a constructor with no parameters is called the
default constructor and a function that takes a single parameter of the
same class is called the copy constructor. In C++, of course, the copy
constructor’s parameter must be a reference:

Complex (Complex& x) : rp(x.rp), ip(x.ip) {}

Otherwise, the copy constructor would be invoked recursively to try
to pass the parameter by value.

In C++, we sometimes have to specify a default constructor even
when we don’t want to give clients the ability to create an object
without specifying an initial value. That’s because when we create
an array, C++ must create objects to fill it:

Money priceTable[100];

Here the default constructor for Money will be invoked 100 times to
initialize the array. For a numeric class, that’s usually acceptable,
since there’s some value we can consider a default, usually zero.2

Note that this doesn’t occur in Java; see Chapter 8.
A constructor with parameters that all have a default value is an

acceptable default constructor. For example,

Complex(const double x=0.0, const double y=0.0)

2Date is the only exception; see Chapter 5.

2.3.5 C++ Compiler-generated functions

Three functions are automatically generated by the compiler when-
ever the class definition omits them:

• the copy constructor
• the destructor (see Section 2.3.6)
• the assignment operator

These generated versions work just fine for contiguous objects, that is,
wherever all the component data items belonging to an object lie
inside the object itself. Since, except for the arrays in Chapter 8, and a
simple character string class (see 2.7), nearly every object we shall
use in this book is contiguous, we shall routinely let the compiler
generate those default versions. As a courtesy to the future mainte-
nance programmer, however, we customarily affirm in commentary
that the omission was not an oversight:

// The compiler will generate an
// acceptable copy constructor
// destructor, and assignment operator

2.3.6 C++ destructor

We do need to code an explicit destructor whenever the constructors
allocate a resource such as memory. If a constructor allocates
memory, the destructor for that class must free it. Furthermore, if any
constructor for a class allocates a resource, then all constructors for
that class should do so, unless some complicated scheme allows the
destructor to figure out when to free the resource.

The destructor has the same name as the class with a prefix tilde
character. It takes no parameters, since programs never invoke it
explicitly:

~Complex() {..code to free resources. . }

The destructor is invoked whenever the object is to be destroyed.
That will occur

• when a local object passes out of scope (return from
a function, for example), or

• when the user program explicitly deletes the object.

2 • REVIEW OF C++ AND JAVA FACILITIES AND TECHNIQUES • 27

If we expect our class to be used as a base class in an inheritance hier-
archy, then it’s good practice to make the destructor a virtual func-
tion, that is, subject to polymorphic invocation:

virtual ~Complex(){ }

That insures that the right destructor will be called if the user pro-
gram executes

delete objPtr;
or delete[] objPtr;

where objPtr is declared to be a pointer to the base class but actually
contains a pointer to an object of a derived class.

2.3.7 Java destructor and garbage collection

Java has no destructor. Instead, the garbage collector examines the
active references to an object and frees the storage when no such ref-
erence exists. That eliminates memory management bugs, but it’s
still possible to run out of memory if the program leaves long-lived
references to data it no longer needs. Suppose there are active refer-
ences to obj, which in turn contains a reference to an object item
that the program no longer needs.

A good-practice solution recommended by Joshua Bloch is to
destroy a reference whenever (a) the object it points to is no longer
needed and (b) the reference itself (obj) is not about to become free.3

obj = null;

2.3.8 Java assignment operator

The assignment operator exists in Java, but for reference data it does
something entirely different not only from C++ but also from almost
every procedural programming language. Java’s assignment oper-
ator assigns a reference to the same object. After the program exe-
cutes

obj1 = obj2; // reference assignment

any changes to the object referred to (and thought of) as either obj1
or obj2 will be reflected in both. If you want conventional assign-

28 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

ment semantics, you have several choices. Suppose obj1 and obj2
are declared as references to instances of class X. Then you can

• implement a clone() method in class X to create a
new copy of the object and return a reference to it. X
must also implement the Cloneable [sic] interface.

This is a popular Java convention, but unfortu-
nately the returned reference is not to an instance of
class X but rather to an instance of the root Object
class. The user program has to cast it back to the
intended class before using it:

obj1 = (X) obj2.clone();

• implement a method that mimics ordinary assign-
ment semantics:

obj1.set(obj2).

This assumes that obj1 already exists (is not null).

• just have the client program invoke the copy con-
structor explicitly:

obj1 = new X(obj2);

This technique works whether obj1 already exists or
not.

2.3.9 Implicit conversion in C++

C++ provides two helpful facilities for converting a data item from
one type to another without explicit casting, where at least one of the
types is not a built-in primitive type. Suppose we’ve declared two
objects:

TypeA objA;
TypeB objB;

Suppose the program then uses objB in a context that’s invalid for a
TypeB object but would make sense for a TypeA object. That will

2 • REVIEW OF C++ AND JAVA FACILITIES AND TECHNIQUES • 29

3Joshua Bloch, Effective Java: Programming Language Guide (Reading, Mass.:
Addison-Wesley Professional, 2001).

30 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

work, provided that one but not both of the following have been
defined:

• a single-parameter constructor in class TypeA that takes
a parameter of TypeB:

TypeA::TypeA (const TypeB x);

Of course, the constructor can have more parameters
if they have default values.

TypeA::TypeA (const TypeB x, long size=20);

• an inverse conversion operator in class TypeB that cre-
ates a TypeA object:

TypeB:: operator TypeA() { }

The second approach also works when TypeA is a built-in primitive
type, such as double.

Implicit conversion is not transitive. C++ won’t implicitly con-
vert a TypeB object to a TypeC object if you’ve defined a rule for con-
verting a TypeB to a TypeA and another rule for converting a TypeA
to a TypeC.

2.3.10 Implicit conversion in Java

Java has no comparable facility, but provides implicit conversion in
one special case. If an object reference obj appears in a context
where the compiler expects a character string, the compiler will gen-
erate a call to method obj.toString(). That’s handy for simple
console output:

System.out.print(obj);

or for concatenating a string with an object:

msg = Amount due is + totalPrice;

Of course, the class designer can always provide other conversion
methods that client programs will invoke explicitly.

2 • REVIEW OF C++ AND JAVA FACILITIES AND TECHNIQUES • 31

2.4 Operator overloading in C++

2.4.1 Member function versus independent function

C++ provides two ways of defining the meaning of an operator
applied to one or more objects. We can define an operator function
either as a member function or as an independent function. Consider
the following code:

Angle theta, phi;
.
.

phi = theta * 2.0;

Unless we’ve defined a meaning for the * operator, the compiler will
complain that the operator is not defined for an Angle left operand.
To legitimize the above code, we might define an independent
function:

Angle operator* (const Angle ls, const double rs)
{Angle result = ls;
result.value *= rs; // (needs friend access)
result.normalize();
return result; }

We conventionally use the names ls and rs for the left and right
operands of binary operator functions.

Alternatively, we could define * as a member function:

Angle Angle::operator* (const double rs) const
{Angle result = *this;
result.value *= rs;
result.normalize();
return result; }

Here, the left side operand is implied: the object for which the func-
tion was invoked.

In either case the compiler simply transforms the normal expres-
sion syntax into a function call, so that . . theta * 2.0 . . becomes
either

. . operator*(theta, 2.0).. // operator* defined
// as independent

or
. . theta.operator*(2.0).. // operator* defined

// as member

As a general rule, we prefer

• the member function whenever

˚ the left operand must be an object of the class, or

˚ the function needs access to private members.

• the independent function whenever

˚ the left side parameter is not a member of the
class, or

˚ we want to allow either operand to be converted
implicitly, by invoking a single-parameter con-
structor.

C++ requires a member function for the assignment operator.
Neither version above takes care of all legitimate multiplications

of an Angle by a pure number. The client program might have
coded:

. . 2.0 * theta . .

That won’t match the parameter signature of either the member or
the non-member version. We need two multiplication functions: one
of the above and

Angle operator* (const double ls, const Angle rs);

Because multiplication is commutative, implementing the second
function is trivial regardless of whether the other one is a member or
an independent function. We simply define it in terms of the other
function:

Angle operator* (const double ls, const Angle rs)
{return rs * ls;}

Problems and exercises

2.4-1 The last multiplication operator above would be valid for
any class, as long as multiplication is commutative. Some

32 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

2 • REVIEW OF C++ AND JAVA FACILITIES AND TECHNIQUES • 33

designers might suggest, therefore, a global function tem-
plate:

template<class T>
T operator* (const T ls, const T rs)

{return rs * ls;}

What’s wrong with that suggestion?

2.4.2 Sequence and localization

The last example illustrates defining some overloaded operator func-
tions in terms of others. In order to simplify future maintenance, we
should do this whenever it doesn’t compromise efficiency.

Another obvious candidate is the combination of a binary arith-
metic operator such as + and the corresponding compound assign-
ment operator +=. Some programmers are irritated when they learn
that they have to define both. If we’ve defined +, they argue,
shouldn’t the compiler know what += means?

Well, it doesn’t, and tedious as it is, you still have to define both
operators. An obvious but somewhat inefficient approach is to define
the compound assignment operator as a member function in terms of
the simple arithmetic operator:

Money operator+ (const Money rs) const
{Money result;
result.value = value + rs.value; // (or whatever)
return result;
}

Money& operator+= (const Money rs)
{Money result = *this + rs; return *this;}

That works, but as Scott Meyers and others point out, it’s unneces-
sarily expensive.4 The efficient approach is to define the compound
assignment operator first as primitive, and then define the simple
binary operator in terms of it:

Money& operator+= (const Money rs)
{value += rs.value;
return *this;} // Note: no new object

Money operator+(const Money rs) const
(Money result = *this;
return result += rs;

}

4Scott Meyers, More Effective C++ (Reading, Mass.: Addison-Wesley Profes-
sional, 1996).

The latter approach avoids creating a new object in the compound
assignment operator function. With that in mind, we advise client
programs to prefer compound assignments, especially where the
expression contains only one binary operator.

Note that the second version of the simple binary operator func-
tion above knows nothing about the object’s internal representation.
It could therefore be implemented as a non-member, non-friend
inline function. Some smart compilers may be able to optimize away
the new result object if we rewrite the simple + operator to use an
unnamed temporary object by explicitly calling the copy constructor:

Money operator+(const Money rs) const
(return Money(*this) += rs;
}

Most examples in this book follow Meyers’s recommendation.

Problems and exercises

2.4-2 Both versions of the compound assignment operator +=
return a reference to the object, while the simple + operator
returns an actual object. Are both of those conventions nec-
essary? Why?

2.4-3 Suppose we learn that the project for which we’re developing
a class needs only the simple operators and not the com-
pound assignment ones. How would knowing that alter our
strategy in defining binary arithmetic operators for the class?

2.4.3 Increment and decrement operators

Later chapters will examine when it’s appropriate to overload the
increment (++) and decrement () operators. Here, we’ll just look at
some of the mechanics.

First, we have to distinguish between the prefix version (++k) and
the postfix version (k++). C++ recognizes the following artifice:

const ClassName& operator++(); // Prefix version
ClassName operator++(int); // Postfix version

The dummy int parameter to the postfix version is never used.

34 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

2 • REVIEW OF C++ AND JAVA FACILITIES AND TECHNIQUES • 35

Second, note that the prefix version doesn’t create a new object,
but just changes the state of the object for which it’s invoked. The
result is a reference, so as to avoid creating a temporary object. We
make it const for consistency with C, where the result is not a Lvalue
into which the program can store a new value.

Finally, we can always define the postfix version in terms of the
prefix version:

ClassName operator++(int)
{ClassName result = *this;
++(*this);
return result;
}

2.4.4 Inline versus separately compiled function

In object-oriented programming, many of the methods are much
smaller than typical functions in purely procedural programs. An
accessor function, for example, often consists only of a return state-
ment. Since conventional subroutine linkage would then account for
an unacceptably large percentage of the function’s execution time,
C++ needed a construct that provided the modularity of functions
without the overhead of subroutine linkage. That construct is the
inline function.

You tell the compiler that a function should be generated inline
in either of two ways:

• For any function, member or independent, code the
inline specifier.

• For a member or friend function, define the function
body inside the class definition.

In Java, of course, we fully define all methods within the class defini-
tion. We trust the compiler to decide which functions should be gen-
erated inline.

2.4.5 What about exponentiation?

Programmers often complain about C’s lack of the exponentiation oper-
ator supported by almost every other procedural programming lan-
guage, even COBOL. The ability to define operators in C++ may
tempt us to try to fill that need, but we’ll be unsuccessful.

36 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

Syntactic ambiguities, prece-
dence confusion, or semantic con-
flicts would result if we were
allowed to define, say, x**n or x^n
to mean exponentiation.

When would x**p mean
x*(*p)? Should a/b**c mean
a/(b**c) or should it mean
(a/b)**c? When would a^b have
its original Boolean exclusive or
meaning? (If you’re skeptical, you
can read Stroustrup’s discussion
and explanation of this issue.5) So
we’re stuck with using a named
function for exponentiation. The C
library’s function

double pow(const double x,const double y);

takes care of the most general case of xy, but if you want to go to
extra trouble for the common situation where the exponent is an
integer, you can provide an efficient specialized version, such as this
recursive function template:6

template<class T> T power(const T x, const int n)
{T t;
return n == 0 ? 1 // Base cases
: n == 1 ? x // (optional)
: n < 0 ? 1 / power(x, -n) // Negative

// power
: n%2 == 1 ? x * power(x,n-1) // Odd power
: t = power(x,n/2), t * t; // Even power

}

Note that the nested selection (?:) operators don’t require paren-
theses, since they associate left to right. That lets us list the condi-
tions in a column, with the corresponding actions to the right, a
rather readable construct once you’re familiar with it. If you’re

5Bjarne Stroustrup, The Design and Evolution of C++, 3rd ed.
6If you’re not comfortable with recursion, long supported by C, you can safely
ignore this example, the only recursive function in this book.

Ambiguous syntax

C already exhibited syntactic ambi-
guity before anyone thought of operator
overloading. A careless programmer
might code

a/*p

intending to divide a by the number
pointed to by p. But /* starts a com-
ment. The programmer must either
provide explicit parentheses or insert a
space between the two operators.

Haste made much waste when
they designed the syntax of that oper-
ator-rich language.

acquainted with Lisp, you’ll recognize this construct as equivalent to
the COND function.7

Problems and exercises

2.4-4 The last line of the power function above is illegal in Java.
Why? How can the Java programmer change it so that it’s
legal and yields the correct result?

2.4-5 Why is the second base case (n=1) optional? What would
happen if we removed that line? Why should we leave it in?

2.4-6 How many multiplications will be performed for n=35? Is
that optimal?

2.5 Operator overloading in Java

Not only does Java not support operator syntax for objects, but Java
insiders vigorously disapprove of all operator overloading. Here’s a
typical explanation:

“. . . the language designers decided (after much debate)
that overloaded operators were a neat idea, but that code
that relied on them became hard to read and understand.”8

Those language designers must have felt that

totalPrice += quantityOrdered * unitPrice;
if (totalPrice > creditLimit) . . .

is harder to read and understand than

totalPrice.addSet(unitPrice.mpy(quantityOrdered));
if (totalPrice.greaterThan(creditLimit)) . . .

Many experienced application programmers express amazement,
mild regret, or stern condemnation when they discover this, but
whether or not we agree with the language designers’ choice, we still
have to accept it and work around it.

Of course, programs still have to do arithmetic on numeric
objects and compare numeric objects. We must therefore define

2 • REVIEW OF C++ AND JAVA FACILITIES AND TECHNIQUES • 37

7A 40-year-old list processing language widely used in artificial intelligence
applications.
8David Flanagan, Java in a Nutshell, (Sebastopol, Calif.: O’Reilly an Associates,
Inc., 2005).

named functions to take the place of operator syntax. This book uses
the following mnemonics for those functions:

Problems and exercises

2.5-1 We provided equivalents for only three of the six possible
Boolean operators. Is that acceptable? Advisable? Why?

2.5-2 Note that the equals function described above is not the one
inherited from object and conventionally overridden by
other Java classes. In what ways is it different? Why do we
need both? What about Java’s conventional CompareTo
function and Comparable interface?

2.6 Flow control constructs

You undoubtedly already know how all the flow-control constructs
work. We’re just going to recommend two good practices.

C++ operator Java equivalent

- a a.minus()

a = b; a.set(b)

a + b a.add(b)

a – b a.sub(b)

a * b a.mpy(b)

a / b a.div(b)

a % b a.mod(b)

a += b a.addSet(b)

a -= b a.subSet(b)

a *= b a.mpySet(b)

a /= b a.divSet(b)

a %= b a.modSet(b)

a == b a.equals(b)

a < b a.lessThan(b)

a > b a.greaterThan(b)

38 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

2 • REVIEW OF C++ AND JAVA FACILITIES AND TECHNIQUES • 39

2.6.1 Prefer prefix increment and decrement

When the increment or decrement operators are used in a separate
statement or clause, we don’t care whether the operation is per-
formed before or after the value is returned because we don’t use the
value. For example, many C programmers habitually use and many
textbooks recommend this loop-control idiom:

for (ctr=0; ctr < limit; ctr++);

If you have that habit, you should change it to:

for (ctr=0; ctr < limit; ++ctr);

That makes no difference, of course, when ctr is a built-in primitive
data item, such as an int. It makes a big difference, however, when
ctr is an object of a defined class, such as Date. We know that the
suffix version of the overloaded ++ operator creates a new object,
while the prefix version doesn’t (see Section 2.3.13). The suffix ver-
sion’s extra overhead in execution time may or may not be signifi-
cant, but if the program executes it billions of times it may have a
noticeable impact. Anyway, there’s no tradeoff, since it costs nothing
to use the prefix version.

2.6.2 Avoid switch case for implementing a table

Some introductory textbooks illustrate the switch-case construct with
a misguided example like this one:

switch(monthNumber) {
case 1: ndays = 31; break;
case 2: ndays = 28; break;
case 3: ndays = 31; break;
case 4: ndays = 30; break;

.

.
case 12: ndays = 31; break;
default: ndays = 0; // error

}

or as a function (break not needed):

40 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

int daysInMonth(const short monthNo)
{switch(monthNo) {

case 1: return 31;
case 2: return 28;
case 3: return 31;
case 4: return 30;

.

.
case 12: return 31;

}
return(0); // error

}

What’s wrong with that? Well, all the code is doing is implementing
a simple table. The following function does the same thing more
clearly and probably more efficiently:

int daysInMonth(const short monthNo)
{static const short ndays[] = {31, 28, 31, 30, 31, 30,

31, 31, 30, 31, 30, 31};
if (monthNo >=1 && monthNo <=12)

return ndays[monthNumber-1];
return 0;

}

The intent of switch case is to support doing something different
depending on the value of some number, usually an enumerated data
item. For example, a generalized transaction processor might con-
tain something like this:

switch(transactionType) {
case addNewCustomer:

.
case changeAddress:

.

.

However, whenever you find yourself doing the same thing, such as
return or assigning different values to the same variable, you
should consider simplifying your logic with an explicit table.

Problems and exercises

2.6-1 Explain in what practical respects the second version of
daysInMonth above is better than the first (switch-case) one.

2 • REVIEW OF C++ AND JAVA FACILITIES AND TECHNIQUES • 41

2.6-2 Find an example in a C, C++, or Java textbook where the
author has used switch case to do the same thing with dif-
ferent values. Rewrite it to use a straightforward table.

2.7 Manipulating character-strings in C++

This book is about numeric computing, not string manipulation.
Therefore, we won’t discuss in detail techniques of string handling.
However, our numeric classes will occasionally need to generate a
character string, for example, as the result of a function that gener-
ates an external data representation.

2.7.1 C-style strings

Among popular procedural programming languages, C provided the
weakest support for character strings. The usual way of representing
a character string in C was as an array of char terminated by the
non-printing null character ACSII code 0, coded \0). Among the
shortcomings that irritated C programmers were the following:

• A function couldn’t return a string (char*) result
without introducing potentially catastrophic memory
management anomalies. That made it impossible, for
example, to write a usable substring function.

• Strings couldn’t be assigned (= operator) or com-
pared (==, < operators) using ordinary expression
syntax.

• A program could easily overrun the allocated space.
A function had no way of determining how much
space had been allocated to a char* parameter. This
shortcoming alone led to innumerable subtle bugs
and provided entrée to some notorious virus pro-
grams.

• Except when the string length was a compile-time
constant, the program had to allocate the memory
explicitly. Then the actual data could not be con-
tiguous with a record (struct), further complicating
record copying and input-output.

42 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

2.7.2 User-defined string classes

C’s crude string capability inspired early C++ users to develop char-
acter string classes or packages of related classes. Most of those
string packages, including some from major compiler vendors, had
serious flaws, ranging from catastrophic bugs to clumsy user inter-
faces to violations of object-oriented concepts. Some of them even
preserved the shortcomings of C-style strings!

The minority that didn’t eventually brought first-rate string capa-
bilities to C++ programmers in a few organizations, but none of them
achieved widespread outside acceptance.

2.7.3 The standard string class

Eventually C++ got a string class that was blessed as a standard and
supported by all modern compilers. Like C, it treats strings as con-
tainers rather than as elementary data items. Its main virtue is
extremely efficient implementations, usually based on reference
counting.9 Nevertheless, there are some serious shortcomings:

• For simple and straightforward string handling, it’s
harder to use than it ought to be, with an excessive
number of methods having overlapping functionality.

• It provides no support for fixed-length strings,
common in business forms and databases.

• It provides no support for embedded (contiguous)
strings within a record, a traditional need in business
applications.

2.7.4 String handling in this book

First, we’re going to avoid string handling wherever possible. For
example, we’ll avoid implementing external input functions
(istream& operator>>(. . .)) if we don’t absolutely need them.

However, our examples still need strings in several areas, espe-
cially external output or conversion to external representation. We
have to use some string class, but none of the above, because

9A technique that avoids copying the string data in some cases, e.g. for a func-
tion return value. See Scott Meyers, More Effective C++.

2 • REVIEW OF C++ AND JAVA FACILITIES AND TECHNIQUES • 43

• Although we know of some excellent easy-to-use,
user-defined string classes, it would be too burden-
some for you to have to copy them and set them up.

• The standard string class is too complicated and awk-
ward to use for our simple needs.

What we’re going to do, therefore, is to present the simplest possible
string class, SimpleString, that permits

• string-valued functions
• string assignment
• concatenation
• size that is adjustable upon allocation

SimpleString doesn’t support scanning and parsing. Our Sim-
pleString class is meant only to support examples in this book.
You can run the examples and experiment with SimpleString, but
you should choose a more complete and robust string class for your
serious software development.

2.8 Canonical class structure

A typical complete class definition, even one for a simple elementary
data type, consists of several pages of dense code. The maintenance
programmer needs to find items of interest quickly and reliably.
Therefore, most organizations’ standards for C++ or Java classes
specify a preferred sequence.

Fashions change. In the early days of C++, class definitions typi-
cally began with the private data members. Today, however, many
programmers place the data members last, beginning the class with
the public interface (the constructors, accessors, overloaded opera-
tors, and so on). This recent practice caters less to the maintenance
programmer than to the client programmer (user) who has to consult
source code in the absence of usage documentation.

Actually, it makes very little practical difference. Each organiza-
tion or project team should choose a preferred sequence and stick to
it for the sake of consistency. Regardless of your own preference on
this minor issue, you should be willing to follow the standards of the
group you’re working with at the time. Where there’s a compelling
reason to depart from the sequence your group expects, explain it in
brief commentary.

The complete class examples in this book adhere to the following
sequence:

1. private data members
2. constructors
3. destructor
4. accessor functions
5. inverse conversion operator
6. arithmetic operator functions
7. relational operator functions
8. I-O stream operator and external conversion methods

We put static data, static functions, and private methods near any
other members to which they’re closely related. Again, if your orga-
nization prefers a different sequence, that’s fine. The sequence of
class members is not an issue worth discussion.

2.9 Overcoming macrophobia

2.9.1 Bad macros

C++ insiders disparage the use of the preprocessor, inherited from C.
Java goes further by not supporting a preprocessor in the standard
language. Experts, including the designers of both languages, advise
against using macros. Stroustrup warns:

“The first rule about macros is: Don’t use them if you
don’t have to. Almost every macro demonstrates a flaw in
the programming language, in the program, or in the pro-
grammer.”10

What really offends Stroustrup and other experts are these two
common uses of macros in traditional C:

• defining constants:

#define NITEMS 32

• implementing generic pseudo-functions:

#define ABS(x) ((x) >= 0 ? x : -(x))

44 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

10Bjarne Stroustrup, C++ Programming Language, 3rd ed.

2 • REVIEW OF C++ AND JAVA FACILITIES AND TECHNIQUES • 45

Both of those macro definitions are handled more flexibly and more
reliably by features of C++:

const int NITEMS = 32;
template<class T>
inline T abs(const T x) {return x >= 0 ? x : -x;}

or Java:

public static final int NITEMS = 32;
public T abs(final T x) // member of class T

{return x.greaterThan(0) ? x : x.minus();}

2.9.2 Good macros

The main benefit of macros in any programming language is that
they provide a way of capturing and packaging patterns of code.
Specifically, macros are able to

• localize such patterns for ease of future change
• facilitate complying with standards for such patterns
• minimize or eliminate opportunities for error
• enhance source-code readability

There is no other way in C++ (and no way at all in Java) to capture
code patterns that are not functions. Here’s a small, simple example

#define ACCESSOR(name, rtnType, expr) \
rtntyp name() {return expr;}

A programmer defining the Complex class could use that macro like
this in the class definition:

ACCESSOR(realPart, double, rp)
ACCESSOR(imagPart, double, ip)
ACCESSOR(rho, double, sqrt(rp*rp + ip*ip))
ACCESSOR(theta, Angle, atan2(ip/rp))

Since maintenance programmers scanning the source-code would
immediately spot those functions and understand their purpose, you
wouldn’t need any explanatory commentary. Don’t worry; we’re not
going to use that sort of low-level macro coding in this book.

2.9.3 Packaging common patterns in elementary numeric classes

Defining a robust, production-quality class can be awfully tedious
and error-prone. We need to implement dozens of methods, follow
dozens of rules, and avoid dozens of pitfalls.

Preprocessor macros are the only C++ facility that can help. In
Chapter 4 we shall package the additive pattern, and in Chapter 5 we
shall package the point-extent pattern using mainly the simplest of all
preprocessor facilities, the #include macro statement. In Chapter 6
we shall use some ad hoc macros to reduce repetition of smaller pat-
terns of code, and thereby simplify future program maintenance.

Those simple examples may stir your imagination to consider
this approach whenever you find yourself repeating the same pattern
of code over and over.

Problems and exercises

2.9-1 Among standard higher-level languages, PL/I provides the
most powerful macro (or preprocessor) language. Consult a
PL/I manual to learn how macros work, and then try to find
some examples that exploit those facilities. Discuss whether
a similarly powerful preprocessor would help or hurt pro-
gram development and maintenance in C++ or Java.

2.9-2 (*C) The switch case construct (2.3.17) works only for
integer types. Using macro coding, devise an equivalent
flow control construct Switch Case that works for any data
type. Document any reasonable restrictions due to limita-
tions of the macro language (forbidding nested occurrences
of this construct, for example).

2.9.4 #include dependencies

Many #include files, especially class definitions, depend on defini-
tions in other #include files. There are two ways of handling such
situations:

1. The usage documentation for file A can tell the user
that file B has to be included first, like this:

#include B
#include A

46 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

2. File A can itself contain the preprocessor statement
#include B. If file B contains definitions that the
compiler should see only once, then it’s customary to
surround the code with a multiple-include guard, usu-
ally #ifndef #endif.

The second technique has become common practice among C and
C++ programmers, because it localizes knowledge and relieves the
programmer of complicated bookkeeping. Nevertheless, there are a
few situations where the first technique is preferable.

One such situation is the packaging of truly global definitions,
such as constants, functions, and macros that nearly every program
needs and that the programmer should hardly need to think about.
Such definitions are like extensions to the C++ language itself.

In the code appendix is a minimal set of such definitions, file
global.hpp. Most organizations will want to expand it to include
more conventional names and functions that they wish to be stan-
dard for their programming staff or at least for an individual project
team, for example an #include for a string class.

Some experts who disparage macros claim that use of macros
impairs program readability by introducing unfamiliar syntax.
Experience shows, however, that macros like these greatly facilitate
readability among groups of programmers who are acquainted with
them and use them every day.

This technique also reduces compile times, since global.hpp is
opened only once per compile. When programs grow very large,
compile times can become surprisingly long, and a lot of that time is
wasted in opening #include files only to skip to the end and close
the file because of the multiple-include guard.

Problems and exercises

2.9-3 C programmers often call #include files “header files.” Dis-
cuss how that tradition may have originated and whether it’s
reasonable today to call every includable source-code file a
“header.”

2.9-4 Java’s designers consider a general #include facility unnec-
essary and potentially dangerous. Consider their views and
decide whether you concur. State persuasive reasons to sup-
port your position.

2 • REVIEW OF C++ AND JAVA FACILITIES AND TECHNIQUES • 47

2.9-5 A few of the generic functions in global.hpp, for example
min(x,y), duplicate those available in the standard template
library (STL). What considerations justify also having them
in global.hpp?

2.9.5 Macros in this book

In later chapters, we shall occasionally exploit macros in a couple of
situations where C++ provides no alternative facility

• to capture patterns of code for reuse in multiple com-
ponents.

• locally, to “factor out” tedious repetition within a
component to enhance readability and avoid error.
The global.hpp example above uses a couple of
such local macros.

We refrain, however, from using macros as extensively here as we do
when we write production code. Thus, readers can skip this chapter
and still be able to understand every example.

2.10 Program readability

2.10.1 Commentary and data names

A program is not only something to be run on a computer but also a
document for people to read. We assume that the reader is an experi-
enced programmer, often the original programmer at a later time.

Good programmers use commentary in four places:

• A title comment introduces a class definition, an
important function, a package of macro definitions,
some other nontrivial module, or an entire source-
code file. For proprietary programs, it often includes
a copyright notice.

• Introductory comments describe the purpose and
usage of a class, function, or other module.

• Block comments describe the purpose and strategy of
a group of related statements.

• Line-by-line comments explain an individual state-
ment or even a part of a statement.

48 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

Program documentation is an integral part of programming, not a
separate activity. Title and introductory comments are best written
before the code. That helps you to clarify your thoughts and usually
saves time. Line-by-line and block comments can be written before,
during, or after the code. In complicated logic block comments are
often useful to explain the state of data items at that point.

Line-by-line comments should avoid stating what’s obvious from
the code. Describe what is being done, not how. For example,

Not: ++posn; // Advance the position
But: ++posn; // Skip over the comma
Not: weight*=2.2; // Multiply by conversion factor
But: weight*=2.2; // Convert to pounds
Not: while(count>0) // Loop until count exhausted
But: while(count>0) // Examine all work orders

By choosing meaningful data names, we often avoid the need for any
line-by-line comment:

Not: while(count>0) // Examine all work orders
But: while(workOrderCtr>0)
Not: weight*=2.2; // Convert to pounds
But: weightInPounds = weight * kgToPound;

Data names should be mnemonic, suggesting the purpose or usage
of the data item from the point of view of the module. Names
should be long enough to be mnemonic (or self-documenting) but
not so long as to force typical statements to span multiple 80-char-
acter lines. Single character variable names, such as k, are sometimes
appropriate for abstract mathematical quantities or bound variables
having a short scope (such as a loop index).

2.10.2 Format criteria and editor support

Criteria for writing easy-to-read code haven’t changed since the
structured revolution of the 1970s. Today, however, it has become
harder to satisfy those criteria, because many of the editors and
development platforms that we use to create and maintain C++ and
Java source code fail to support basic page layout facilities.

One excuse we hear is that programmers, especially younger
ones, view their code only on a computer screen where the text is
continuous. Instead of turning a page, the programmer scrolls the

2 • REVIEW OF C++ AND JAVA FACILITIES AND TECHNIQUES • 49

text, using either a vertical scroll
bar or the up and down keyboard
arrows. If we never print the
source code on hard copy, then
why, some ask, should we care
about page layout?

Actually, experience shows
that it’s often much easier to com-
prehend a module on a 55-line
page (or a pair of facing pages)
than on a screen. No matter how
comfortable you are with your
online program editor, I strongly
recommend that you print and
save a paper copy every now and
then, study it carefully, and make
notes on it in red pencil.

2.10.3 Uncontrolled page breaks

One particularly irritating omission is the lack of any way to insert a
hard page break. When the top line of a module appears at the
bottom of a page, or when a four-line loop is split between pages,
readability suffers.

Some programming organizations have developed their own
source-code listing programs that interpret embedded commands,
such as

//%EJECT

Others paste an entire module into a word processor and then edit
the text to produce a readable presentation (or publication) copy.
That’s too much labor, however, for everyday use, and it runs the
risk of last-minute changes to the presentation copy that aren’t
reflected in the compiled copy.

2.10.4 Page and line width

Even though we no longer prepare source code on 80-column
punched cards, programmers still work with 80-position lines. Char-

50 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

Why monospaced font?

With the huge choice of fonts now
available on most platforms, some
experts have recently abandoned the
uniform (e.g. Courier) font tradition-
ally favored by programmers. If we dis-
play and print our programs in, say,
Times Roman font, we can squeeze
more characters onto a line.

The disadvantage of a variable
width font is that the programmer no
longer controls alignment of corre-
sponding elements of a series of lines
(see 1.62.3.33). That can make errors
harder to spot. Even indentation may
be less clear. I recommend sticking
with monospaced font for displaying
and printing your source-code.

acter display monitors and the “command windows” that mimic
them are typically limited to 80-position lines. With 11-point mono-
spaced font and normal margins, standard paper accommodates
lines up to 80 characters.

Trouble arises because some of our source-code editors recognize
no such limitation. They’ll let you keep typing 200 or more charac-
ters on a line. When you try to view such a line on the screen you
have to scroll the text horizontally, and when you print them on
paper, they either get chopped off or continued (ruining your inden-
tation) at the left margin of the next line.

Even without horizontal scrolling, the most popular screen reso-
lution lets you enter 100 characters without realizing that you’ve
gone off the page. You can still see the whole line on the page, but
you can’t print it on normal paper.

If your editor doesn’t warn you when you’ve exceeded a stan-
dard line size, it probably displays the current character position in a
corner somewhere. Keep an eye on it and don’t go beyond position
80. Since both Java and C++ syntax accept line breaks between
tokens, you can always split a statement between lines in a highly
readable manner.

2.10.5 A macro convention

The global.hpp definitions we introduced in Section 2.3.25 contain
definitions for a set of macro names that enhance source code read-
ability:

#define INT const int
#define DOUBLE const double
. (and so on)

If you use these macro names, you’ll not only conserve horizontal
space on the listing, but also reduce the chance of forgetting const in
the parameter list of a function. We strongly recommend extending
this convention to classes you define. For example,

#ifndef COMPLEX
#define COMPLEX const Complex

class Complex {
.
.

};
#endif

2 • REVIEW OF C++ AND JAVA FACILITIES AND TECHNIQUES • 51

2.10.6 Indentation and white space

Compare these two source listings:

The compiler considers them identical, but a human reader does not.
You probably recognize the one on the left as the familiar binary
search algorithm.

Although indenting lines to show the scope of flow control con-
structs contributes greatly to source-code clarity, it’s silly to worry
about the exact number of spaces to indent, whether to put brackets
alone on separate lines, or similar minutiae. The programmer should
be concerned with clear and attractive presentation of source code,
not with complying with arbitrary and restrictive rules.

Blank lines also help to set off blocks of related code. Since they
get in the way when you view a program on a small screen, they pro-
vide another argument in favor of printing program listings on
paper.

2.10.7 Alignment

A block of consecutive similar lines or of similar groups of lines is
easier to read if corresponding elements are aligned. Note that in the
binary search indentation example we also took care to align similar
clauses.

Finally, compare these two:

INT Black = 0;
INT Blue = 1;
INT Green = 2;
INT Red = 4;
INT Cyan = Blue + Green ;
INT Magenta = Blue + Red;
INT Amber = Green + Red;
INT White = Blue + Green + Red;

INT Black = 0;
INT Blue = 1;
INT Green = 2;
INT Red = 4;
INT Cyan = Blue+Green;
INT Magenta = Blue+Red;
INT Amber = Green+Red;
INT White = Blue+Green+Red;

while(lbound <= hbound)
{midp = (lbound+hbound)/2;
if (arg ==tbl[midp])

return midp;
if (arg < tbl[midp])

hbound = midp — 1;
else lbound = midp + 1;
}

return —midp;

while(lbound <= hbound) {
midp = (lbound+hbound)/2;
if (arg ==tbl[midp])
return midp;
if (arg < tbl[midp])
hbound = midp — 1;
else lbound = midp + 1;}

return —midp;

52 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

2 • REVIEW OF C++ AND JAVA FACILITIES AND TECHNIQUES • 53

The version on the right would be even less clear if rendered in a
variable pitch font.

2.11 Error detection and exceptions

Both C++ and Java support exception-handling facilities. In robust
production-quality programs, of course, you’ll want to take full
advantage of them. For the examples in this book, however, we
chose not to throw or catch exceptions, because the subject matter
of this book is entirely independent of the error-handling mecha-
nisms. The subtle complexities of try blocks, catch blocks, excep-
tion hierarchies, and throws declarations would have detracted from
our focus on numeric objects and would have made the examples
harder to grasp.

In the few places where our examples detect errors, we have
relied on an old C facility, the assert(p) macro. If the Boolean
expression parameter p is true, no action is taken, but if it’s false, exe-
cution is terminated. No matter where this occurs in the program,
termination is immediate and abrupt, with no draining of output
buffers or graceful freeing of resources. For example:

Temperature(DOUBLE degreesKelvin) // Constructor
{assert (degreesKelvin > 0.0);
value = degreesKelvin;

}

The assert(p) macro is admittedly crude, but it is far preferable to
ignoring an error. If a constructor leaves an object in an illegal state,
or if a function yields nonsense results, even more serious conse-
quences will surely occur later in the program, and they may be very
hard to diagnose. Never ignore an error.

On the other hand, object orientation eliminates the need for
redundant “paranoid” error checking. A function that takes a Date
parameter, for example, may assume that the Date object is legal and
should not validate that the month is between 1 and 12.

Java (since version 1.4) has an assert statement:

assert p;
or assert p : c;

where p is the Boolean expression to be validated and c is an expres-
sion whose toString() value is to be displayed in the error mes-
sage. If p is false, an AssertionError exception is thrown.

54 • OBJECT-ORIENTED COMPUTATION IN C++ AND JAVA

Problems and exercises

2.11-1 The C library designers might have chosen to implement this
facility as an ordinary function:

void assert(bool p)
{if (!p) abort();}

Why did they elect instead to make it a parameterized
macro?

2.11-2 In both the C and Java facilities, the Boolean expression p
should not generate side effects. Why is this a sensible rule?

